L spectral theory and heat dynamics of locally symmetric spaces

نویسندگان

  • Lizhen Ji
  • Andreas Weber
چکیده

In this paper we first derive several results concerning the L spectrum of arithmetic locally symmetric spaces whose Q-rank equals one. In particular, we show that there is an open subset of C consisting of eigenvalues of the L Laplacian if p < 2 and that corresponding eigenfunctions are given by certain Eisenstein series. On the other hand, if p > 2 there is at most a discrete set of real eigenvalues of the L Laplacian. These results are used in the second part of this paper in order to show that the dynamics of the L heat semigroups for p < 2 is very different from the dynamics of the L heat semigroups if p ≥ 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-Spectral theory of locally symmetric spaces with Q-rank one

We study the L-spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M = Γ\X with finite volume and arithmetic fundamental group Γ whose universal covering X is a symmetric space of non-compact type. We also show, how the obtained results for locally symmetric spaces can be generalized to manifolds with cusps of rank one.

متن کامل

Dynamics of the heat semigroup on symmetric spaces

The aim of this paper is to show that the dynamics of L heat semigroups (p > 2) on a symmetric space of non-compact type is very different from the dynamics of the L heat semigroups if p ≤ 2. To see this, it is shown that certain shifts of the L heat semigroups have a chaotic behavior if p > 2 and that such a behavior is not possible in the cases p ≤ 2. These results are compared with the corre...

متن کامل

An Investigation on the Effects of Gas Pressure Drop in Heat Exchangers on Dynamics of a Free Piston Stirling Engine

This paper is devoted to study the effects of pressure drop in heat exchangers on the dynamics of a free piston Stirling engine. First, the dynamic equations governing the pistons as well as the gas pressure equations for hot and cold spaces of the engine are extracted. Then, by substituting the obtained pressure equations into the dynamic relationships the final nonlinear dynamic equations gov...

متن کامل

Uniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces

We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...

متن کامل

Heat kernel bounds, Poincaré series, and L spectrum for locally symmetric spaces

We derive upper Gaussian bounds for the heat kernel on complete, non-compact locally symmetric spaces M = Γ\X with non-positive curvature. Our bounds contain the Poincaré series of the discrete group Γ and therefore we also provide upper bounds for this series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008